Las aerogeneradores desvían el viento
Aerogenerador y tubo de corriente La imagen de la página anterior sobre la energía en el viento está algo simplificada. En realidad, un aerogenerador desviará el viento antes incluso de que el viento llegue al plano del rotor. Esto significa que nunca seremos capaces de capturar toda la energía que hay en el viento utilizando un aerogenerador. Discutiremos esto más tarde, cuando hablemos de la ley de Betz.
En la imagen de arriba tenemos el viento que viene desde la derecha y usamos un mecanismo para capturar parte de la energía cinética que posee el viento (en este caso usamos un rotor de tres palas, aunque podría haberse tratado de cualquier otro mecanismo).
El tubo de corriente
El rotor de la turbina eólica debe obviamente frenar el viento cuando captura su energía cinética y la convierte en energía rotacional. Esto implica que el viento se moverá más lentamente en la parte izquierda del rotor que en la parte derecha.
Dado que la cantidad de aire que pasa a través del área barrida por el rotor desde la derecha (por segundo) debe ser igual a la que abandona el área del rotor por la izquierda, el aire ocupará una mayor sección transversal (diámetro) detrás del plano del rotor.
Este efecto puede apreciarse en la imagen superior, donde se muestra un tubo imaginario, el llamado tubo de corriente, alrededor del rotor de la turbina eólica. El tubo de corriente muestra cómo el viento moviéndose lentamente hacia la izquierda ocupará un gran volumen en la parte posterior del rotor.
El viento no será frenado hasta su velocidad final inmediatamente detrás del plano del rotor. La ralentización se producirá gradualmente en la parte posterior del rotor hasta que la velocidad llegue a ser prácticamente constante.
Distribución de la presión del aire en la parte delantera y trasera del rotor
Gráfico de la presión del aire El gráfico de la izquierda muestra la presión del aire en el eje vertical, siendo el eje horizontal la distancia al plano del rotor. El viento llega por la derecha, estando situado el rotor en el centro del gráfico.
La presión del aire aumenta gradualmente a medida que el viento se acerca al rotor desde la derecha, ya que el rotor actúa de barrera del viento. Observe que la presión del aire caerá inmediatamente detrás del plano del rotor (parte izquierda), para enseguida aumentar de forma gradual hasta el nivel de presión normal en el área.
ÀQué ocurre corriente abajo?
Corriente abajo, la turbulencia del viento provocará que el viento lento de detrás del rotor se mezcle con el viento más rápido del área circundante . Por lo tanto, el abrigo del viento disminuirá gradualmente tras el rotor conforme nos alejamos de la turbina. Veremos esto más ampliamente en la página sobre el efecto del parque.
ÀPor qué no un tubo de corriente cilíndrico?
Ahora usted podría objetar que una turbina giraría incluso situándola dentro de un tubo cilíndrico normal, como el que se muestra abajo. ÀPor qué insistimos entonces en que el tubo de corriente tiene forma de botella? Aerogenerador y tubo cilíndrico Por supuesto, usted estaría en lo cierto al pensar que el rotor de una turbina podría girar si lo situásemos dentro de un enorme tubo de cristal como el de arriba, pero vea que es lo que ocurre:
El viento de la parte izquierda del rotor se mueve a menor velocidad que el de la parte derecha. Pero al mismo tiempo sabemos que el volumen de aire que entra al tubo por la derecha cada segundo debe ser el mismo que el volumen de aire que sale del tubo por la izquierda. Con ello puede deducirse que si el viento encuentra algún obstáculo dentro del tubo (en este caso nuestro rotor), parte del viento que llega desde la derecha debe ser desviado de la entrada del tubo (debido a la alta presión del aire en el extremo derecho del tubo).
Por tanto, el tubo cilíndrico no es una representación muy exacta de lo que ocurre cuando el viento encuentra una turbina eólica, por lo que la imagen del principio de la página es la correcta.
© Copyright 1997-2003 Asociación danesa de la industria eólica
Actualizado el 6 de mayo 2003
http://www.windpower.org/es/tour/wres/tube.htm
Por favor espera...