Wind Turbine Safety
Photograph Soren Krohn © 1998 DWIA
Shaking sensor The components of a wind turbine are designed to last 20 years. This means that they will have to endure more than 120,000 operating hours, often under stormy weather conditions.
If you compare with an ordinary automobile engine, it usually only operates only some 5,000 hours during its lifetime. Large wind turbines are equipped with a number of safety devices to ensure safe operation during their lifetime.
Sensors
One of the classical, and most simple safety devices in a wind turbine is the vibration sensor in the image above, which was first installed in the Gedser wind turbine. It simply consists of a ball resting on a ring. The ball is connected to a switch through a chain. If the turbine starts shaking, the ball will fall off the ring and switch the turbine off.
There are many other sensors in the nacelle, e.g. electronic thermometers which check the oil temperature in the gearbox and the temperature of the generator.
Rotor Blades
Safety regulations for wind turbines vary between countries. Denmark is the only country in which the law requires that all new rotor blades are tested both statically, i.e. applying weights to bend the blade, and dynamically, i.e. testing the blade's ability to withstand fatigue from repeated bending more than five million times. You may read more about this on the page on Testing Wind Turbine Rotor Blades.
Overspeed Protection
It is essential that wind turbines stop automatically in case of malfunction of a critical component. E.g. if the generator overheats or is disconnected from the electrical grid it will stop braking the rotation of the rotor, and the rotor will start accelerating rapidly within a matter of seconds.
In such a case it is essential to have an overspeed protection system. Danish wind turbines are requited by law to have two independent fail safe brake mechanisms to stop the turbine.
Rotor blade
Aerodynamic Braking System: Tip Brakes
The primary braking system for most modern wind turbines is the aerodynamic braking system, which essentially consists in turning the rotor blades about 90 degrees along their longitudinal axis (in the case of a pitch controlled turbine or an active stall controlled turbine ), or in turning the rotor blade tips 90 degrees (in the case of a stall controlled turbine ).
These systems are usually spring operated, in order to work even in case of electrical power failure, and they are automatically activated if the hydraulic system in the turbine loses pressure. The hydraulic system in the turbine is used turn the blades or blade tips back in place once the dangerous situation is over.
Experience has proved that aerodynamic braking systems are extremely safe.
They will stop the turbine in a matter of a couple of rotations, at the most. In addition, they offer a very gentle way of braking the turbine without any major stress, tear and wear on the tower and the machinery.
The normal way of stopping a modern turbine (for any reason) is therefore to use the aerodynamic braking system.
Mechanical Braking System
Disc brake The mechanical brake is used as a backup system for the aerodynamic braking system, and as a parking brake, once the turbine is stopped in the case of a stall controlled turbine.
Pitch controlled turbines rarely need to activate the mechanical brake (except for maintenance work), as the rotor cannot move very much once the rotor blades are pitched 90 degrees.
© Copyright 1997-2003 Danish Wind Industry Association
Updated 30 July 2003
http://www.windpower.org/en/tour/wtrb/safety.htm
Please wait...